
http://www.javaspecialists.co.za

Java Specialists in Action

Dr Heinz Kabutz
The Java Specialists Newsletter

heinz@javaspecialists.co.za

2

Java Specialists in Action

• Using dynamic proxies to write less code

3

Background – Who Am I ?

• Heinz Kabutz
– Born in Africa, Cape Town
– PhD Computer Science from University of Cape Town

• University famous for first heart transplant

– Relocating to a Greek island on 20th October 06
– Java Champion

4

Background – What do I do ?

• Program on ordinary Java projects
– Since 1997, several 500k+ LOC systems

• Java Code Reviews
– Onsite interviews, Java quality inspection
– 5 day consulting jobs

• Advanced Java Training
– Design Patterns, Java 5, Introduction to Java
– Now offered in Norway through Bouvet

•http://www.bouvet.no/kurs

5

The Java Specialists’ Newsletter
• Advanced topics

– 30 000 readers in 112 countries

– Please subscribe by sending an email to
subscribe@javaspecialists.co.za

6

Questions

• Please interrupt me with questions!
– Or write them down to ask at the end

• There are some stupid questions
– They are the ones you didn’t ask
– Once you’ve asked them, they are not stupid anymore

• The more you ask, the more interesting the talk is

7

Introduction to Topic

• In this talk, we will look at:
– Design Patterns
– Dynamic Proxies in Java
– Soft, Weak and Strong references
– Some Java 5 features

• For additional free topics:
– The Java™ Specialists’ Newsletter

• http://www.javaspecialists.co.za
– And find out how
"hi there".equals("cheers!") == true

8

Design Patterns

• Mainstream of OO landscape, offering us:
– View into brains of OO experts
– Quicker understanding of

existing designs
• e.g. Visitor pattern

used by Annotation
Processing Tool

– Improved communication
between developers

– Readjust “thinking mistakes”

9

Vintage Wines

• Software Design is like good red wine
– At first, quality of wine does not matter

• As long as it has the right effect

– With experience, you discern difference
– As you become a connoisseur you experience the

various textures you didn’t notice before
• Grown on the north slope in Italy on clay ground

• Warning: Once you are hooked, you will no longer
be satisfied with inferior designs

10

Proxy Pattern

• Intent [GoF95]
– Provide a surrogate or

placeholder for another
object to control access
to it.

11

Proxy Structure

12

Types of Proxies in GoF

• Virtual Proxy
– creates expensive objects on demand

• Remote Proxy
– provides a local representation for an object in a different

address space

• Protection Proxy
– controls access to original object

We will focus
on this type

13

Approaches to writing proxies

• Handcoded
– Only for the very brave … or foolish

• Autogenerated code
– RMI stubs and skeletons created by rmic

• Dynamic proxies
– Available since JDK 1.3
– Dynamically creates a new class at runtime
– Flexible and easy to use

14

Model for example

• Company creates
moral fibre
“on demand”

15

public class Company {
 // set in constructor ...
 private final MoralFibre moralFibre;

 public void becomeFocusOfMediaAttention() {
 System.out.println("Look how good we are...");
 cash -= moralFibre.actSociallyResponsibly();
 cash -= moralFibre.cleanupEnvironment();
 cash -= moralFibre.empowerEmployees();
 }

 @Override
 public String toString() {
 Formatter formatter = new Formatter();
 formatter.format("%s has $ %.2f", name, cash);
 return formatter.toString();
 }
}

16

public class MoralFibreImpl implements MoralFibre {
 // very expensive to create moral fibre!
 private byte[] costOfMoralFibre = new byte[900*1000];

 { System.out.println("Moral Fibre Created!"); }
 // AIDS orphans
 public double actSociallyResponsibly() {
 return costOfMoralFibre.length / 3;
 }
 // shares to employees
 public double empowerEmployees() {
 return costOfMoralFibre.length / 3;
 }
 // oiled sea birds
 public double cleanupEnvironment() {
 return costOfMoralFibre.length / 3;
 }
}

17

Handcoded Proxy

• Usually results in a lot of effort
• Good programmers have to be lazy

– DRY principle
• Don’t repeat yourself

• Shown just for illustration

18

public class MoralFibreProxy implements MoralFibre {
 private MoralFibreImpl realSubject;
 private MoralFibre realSubject() {
 if (realSubject == null) { // need synchronization
 realSubject = new MoralFibreImpl();
 }

 return realSubject;
 }
 public double actSociallyResponsibly() {
 return realSubject().actSociallyResponsibly();
 }

 public double empowerEmployees() {
 return realSubject().empowerEmployees();
 }

 public double cleanupEnvironment() {
 return realSubject().cleanupEnvironment();
 }

}

19

import static java.util.concurrent.TimeUnit.SECONDS;

public class WorldMarket0 {
 public static void main(String[] args) throws

Exception {
 Company maxsol = new Company("Maximum Solutions",
 1000 * 1000, new MoralFibreProxy());
 SECONDS.sleep(2); // better than Thread.sleep();
 maxsol.makeMoney();
 System.out.println(maxsol);
 SECONDS.sleep(2);
 maxsol.damageEnvironment();
 System.out.println(maxsol);
 SECONDS.sleep(2);
 maxsol.becomeFocusOfMediaAttention();
 System.out.println(maxsol);
 }
}

Oh goodie!
Maximum Solutions has $ 2000000.00
Oops, sorry about that oilspill...
Maximum Solutions has $ 8000000.00
Look how good we are...
Moral Fibre Created!
Maximum Solutions has $ 7100000.00

20

Dynamic Proxies

• Handcoded proxy flawed
– Previous approach broken – what if toString() is called?
– Fixing synchronization problems would need to be done

everywhere

• Allows you to write a method call handler
– Is invoked every time any method is called on interface

• Easy to use
– But, seriously underused feature of Java

21

But First, References

• We want to release references when possible
– Soft, Weak and Strong references offer different benefits
– Works in conjunction with proxies
– However, references are not transparent

22

Strong, Soft and Weak References

• Java 1.2 introduced concept of soft and weak
references

• Weak reference is released when no strong
reference is pointing to the object

• Soft reference can be released, but will typically
only be released when memory is low
– Works correctly since JDK 1.4

23

Object Adapter Pattern – Pointers

• References are not transparent
• We make them more transparent by defining a

Pointer interface
– Can then be Strong, Weak or Soft

public interface Pointer<T> {
 void set(T t);
 T get();
}

24

Strong Pointer

• Simply contains a strong reference to object
• Will never be garbage collected

public class StrongPointer<T>
 implements Pointer<T> {
 private T t;
 public void set(T t) { this.t = t; }
 public T get() { return t; }
}

25

Reference Pointer

• Abstract superclass to either soft or weak reference
pointer

import java.lang.ref.Reference;
public abstract class RefPointer<T>
 implements Pointer<T> {
 private Reference<T> ref;
 protected void set(Reference<T> ref) {
 this.ref = ref;
 }
 public T get() {
 return ref == null ? null : ref.get();
 }
}

26

Soft and Weak Reference Pointers
• Contains either soft or weak reference to object
• Will be garbage collected later
import java.lang.ref.SoftReference;
public class SoftPointer<T>
 extends RefPointer<T> {
 public void set(T t) {
 set(new SoftReference<T>(t));
 }
}

import java.lang.ref.WeakReference;
public class WeakPointer<T> extends RefPointer<T> {
 public void set(T t) {
 set(new WeakReference<T>(t));
 }
}

27

Using Turbocharged enums

• We want to define enum for these pointers
• But, we don’t want to use switch

– Switch and multi-conditional if-else are anti-OO
– Rather use inheritance, strategy or state patterns

• Enums allow us to define abstract methods
– We implement these in the enum values themselves

28

public enum PointerType {
 STRONG { // these are anonymous inner classes
 public <T> Pointer<T> make() { // note generics
 return new StrongPointer<T>();
 }
 },
 WEAK {
 public <T> Pointer<T> make() {
 return new WeakPointer<T>();
 }
 },
 SOFT {
 public <T> Pointer<T> make() {
 return new SoftPointer<T>();
 }
 };

 public abstract <T> Pointer<T> make();
}

29

PointerTest Example
public void test(PointerType type) {
 System.out.println("Testing " + type + " Pointer");
 MyObject obj = new MyObject(type.toString());
 Pointer<MyObject> pointer = type.make();
 pointer.set(obj);
 System.out.println(pointer.get());
 obj = null;
 forceGC();
 System.out.println(pointer.get());
 forceOOME();
 System.out.println(pointer.get());
 System.out.println();
}

30

Danger – References

• References put additional strain on GC
• Only use with large objects
• Memory space preserving measure

– But can severely impact on performance

• Even empty finalize() methods can cause
OutOfMemoryError
– Additional step in GC that runs in separate thread

31

Defining a Dynamic Proxy

• We make a new instance of an interface class
using java.lang.reflect.Proxy:

Object o = Proxy.newProxyInstance(
 Thread.currentThread().getContextClassLoader(),
 new Class[]{ interface to implement },

implementation of InvocationHandler
);

• The result is an instance of interface to implement

32

import java.lang.reflect.*;

public class VirtualProxy<T> implements InvocationHandler {
 private final Pointer<T> realSubjectPointer;
 private final Object[] constrParams;
 private final Constructor<? extends T> subjectConstr;

 public VirtualProxy(Class<? extends T> realSubjectClass,
 Class[] constrParamTypes,
 Object[] constrParams,
 PointerType pointerType) {
 try {
 subjectConstr = realSubjectClass.
 getConstructor(constrParamTypes);
 realSubjectPointer = pointerType.make();
 } catch (NoSuchMethodException e) {
 throw new IllegalArgumentException(e);
 }
 this.constrParams = constrParams;
 }

33

 public Object invoke(Object proxy, Method method,
 Object[] args) throws Throwable {
 T realSubject;
 synchronized (this) {
 realSubject = realSubjectPointer.get();
 if (realSubject == null) {
 realSubject = subjectConstr.newInstance(
 constrParams);
 realSubjectPointer.set(realSubject);
 }
 }
 return method.invoke(realSubject, args);
 }
}

• Whenever any method is invoked on the proxy object, it
gets the real subject from the Pointer and creates it if
necessary

34

A word about synchronization

• We need to synchronize whenever we check the
value of the pointer
– Otherwise several realSubject objects could be created

• We can synchronized on “this”
– No one else will have a pointer to the object

• Double-checked locking idiom broken pre-Java 5
– It now works if you make the field volatile
– Easier to get synchronized correct than volatile

35

Proxy Factory

• To simplify our client code, we define a Proxy
Factory:

@SuppressWarnings("unchecked") // be careful of this!
public class ProxyFactory {
 public static <T> T virtualProxy(Class<T> subject) {
 // figure out realSubject class and delegate ...
 }

 public static <T> T virtualProxy(Class<T> subject,
 PointerType type) { ... }

 public static <T> T virtualProxy(Class<T> subject,
 Class<? extends T> realSubjectClass,
 Class[] constrParamTypes,
 Object[] constrParams, PointerType type) { ... }
}

36

Proxy Factory

• We will just show the main ProxyFactory method:
– The other methods send default values to this one

public class ProxyFactory {
 public static <T> T virtualProxy(Class<T> subject,
 Class<? extends T> realSubjectClass,
 Class[] constrParamTypes,
 Object[] constrParams, PointerType type) {
 return (T) Proxy.newProxyInstance(
 Thread.currentThread().getContextClassLoader(),
 new Class[] { subject },
 new VirtualProxy<T>(realSubjectClass,
 constrParamTypes, constrParams, type));
 }
}

37

import static com.maxoft.proxy.ProxyFactory.virtualProxy;
import static java.util.concurrent.TimeUnit.SECONDS;

public class WorldMarket1 {
 public static void main(String[] args) throws Exception {
 Company maxsol = new Company("Maximum Solutions",
 1000 * 1000, virtualProxy(MoralFibre.class));
 SECONDS.sleep(2);
 maxsol.makeMoney();
 System.out.println(maxsol);
 SECONDS.sleep(2);
 maxsol.damageEnvironment();
 System.out.println(maxsol);
 SECONDS.sleep(2);
 maxsol.becomeFocusOfMediaAttention();
 System.out.println(maxsol);
 }
}

Oh goodie!
Maximum Solutions has $ 2000000.00
Oops, sorry about that oilspill...
Maximum Solutions has $ 8000000.00
Look how good we are...
Moral Fibre Created!
Maximum Solutions has $ 7100000.00

38

• Weak Pointer is cleared when we don’t have a
strong ref

Company maxsol = new Company("Maximum Solutions",
1000000, virtualProxy(MoralFibre.class, WEAK));

SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();

// short term memory...
System.gc();
SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();

Oops, sorry about that oilspill...
Look how good we are...
Moral Fibre Created!
Oops, sorry about that oilspill...
Look how good we are...
Moral Fibre Created!

39

• Soft Pointer more appropriate

Company maxsol = new Company("Maximum Solutions", 1000000,
 virtualProxy(MoralFibre.class, SOFT));
SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();

System.gc(); // ignores soft pointer
SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();

forceOOME(); // clears soft pointer
SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();
}
private static void forceOOME() {
 try {byte[] b = new byte[1000000000];}
 catch (OutOfMemoryError error) { System.err.println(error); }
}

Oops, sorry about that oilspill...
Look how good we are...
Moral Fibre Created!
Oops, sorry about that oilspill...
Look how good we are...
java.lang.OutOfMemoryError:
 Java heap space
Oops, sorry about that oilspill...
Look how good we are...
Moral Fibre Created!

40

Performance of Dynamic Proxies
933

275

53 53 54105
6 2 2 2

N
o

P
ro

xy

H
ar

dc
od

ed

D
yn

am
ic

(S
tr

on
g)

D
yn

am
ic

(W
ea

k)

D
yn

am
ic

(S
of

t)

Method calls
(100000/s)

Standard Deviation

41

Analysis of Performance Results

• Consider performance in real-life context
– How often does a method need to get called per second?
– What contention are you trying to solve – CPU, IO or

memory?
• Probably the wrong solution for CPU bound contention

• Big deviation for “No Proxy” – probably due to
HotSpot compiler inlining method call.

42

Virtual Proxy Gotchas

• Be careful how you implement equals()
– Should always be symmetric (from JavaDocs):

 For any non-null reference values x and y, x.equals(y)
should return true if and only if y.equals(x) returns true

• Exceptions
– General problem with proxies

• Local interfaces vs. remote interfaces in EJB

– Were checked exceptions invented on April 1st ?

43

Checkpoint

• We’ve looked at the concept of a Virtual Proxy
based on the GoF pattern

• We have seen how to implement this with dynamic
proxies (since JDK 1.3)

• We have also looked at Soft and Weak refs
• Lastly, we were unsurprised that dynamic proxy

performs worse than handcoded proxy

44

Further uses of Dynamic Proxy

• Protection Proxy
– Only route call when caller has correct security context

• Similar to the “Personal Assistant” pattern

• Dynamic Decorator or Filter
– We can add functions dynamically to an object
– See newsletter # 34
– Disclaimer: a bit difficult to understand

45

Dynamic Object Adapter

• Based on Adapter pattern by GoF
• Plain Object Adapter has some drawbacks:

– Sometimes you want to adapt an interface, but only want
to override some methods

– E.g. java.sql.Connection

• Structurally, the patterns Adapter, Proxy, Decorator
and Composite are almost identical

46

Object Adapter Structure (GoF)

47

• We delegate the call if the adapter has a method with this
signature

• Objects adaptee and adapter can be of any type
public Object invoke(Object proxy, Method method,
 Object[] args) throws Throwable {
 try {

 // find out if the adapter has this method
 Method other = adaptedMethods.get(
 new MethodIdentifier(method));
 if (other != null) { // yes it has
 return other.invoke(adapter, args);
 } else { // no it does not
 return method.invoke(adaptee, args);
 }
 } catch (InvocationTargetException e) {
 throw e.getTargetException();
 }
}

48

• The ProxyFactory now gets a new method:
public class ProxyFactory {
 public static <T> T adapt(Object adaptee,
 Class<T> target,
 Object adapter) {
 return (T) Proxy.newProxyInstance(
 Thread.currentThread().getContextClassLoader(),
 new Class[]{target},
 new DynamicObjectAdapter<T>(
 adapter, adaptee));
 }
}

49

• Client can now adapt interfaces very easily

import static com.maxoft.proxy.ProxyFactory.*;

// ...

Connection con = DriverManager.getConnection("...");
Connection con2 = adapt(con, Connection.class,
 new Object() {
 public void close() {
 System.out.println("No, do not close connection");
 }
 });

• For additional examples of this technique, see The Java
Specialists’ Newsletter # 108
– http://www.javaspecialists.co.za

50

Benefits of Dynamic Proxies

• Write once, use everywhere
• Single point of change
• Elegant coding on the client

– Esp. combined with static imports & generics

• Slight performance overhead
– But view that in context of application

51

Demo

• Short demonstration using Dynamic Virtual Proxy
for new interface

52

Conclusion

• Thank you very much for listening to me
• In my experience, Dynamic Proxies are easy to use
• Look for applications where they are appropriate

http://www.javaspecialists.co.za

Java Specialists in Action

Dr Heinz Kabutz
The Java Specialists Newsletter

heinz@javaspecialists.co.za

